Step
*
1
1
of Lemma
strict-monotonic-is-locally-non-constant
1. I : Interval
2. f : I ⟶ℝ
3. (∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f x) < (f y)))) ∨ (∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f y) < (f x))))
4. a : {x:ℝ| x ∈ I}
5. b : {x:ℝ| x ∈ I}
6. x : ℝ
7. u : ℝ
8. v : ℝ
9. a ≤ u
10. u < v
11. v ≤ b
12. f u ≠ f v
⊢ ∃z:ℝ. ((u ≤ z) ∧ (z ≤ v) ∧ f(z) ≠ x)
BY
{ (InstLemma `rneq-cases` [⌜f u⌝;⌜f v⌝;⌜x⌝]⋅
THENA (Auto
THEN Try ((DSetVars THEN MemTypeCD THEN Auto THEN InstLemma `i-member-between` [⌜I⌝;⌜a⌝;⌜b⌝]⋅ THEN Auto))
)
) }
1
1. I : Interval
2. f : I ⟶ℝ
3. (∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f x) < (f y)))) ∨ (∀x,y:{x:ℝ| x ∈ I} . ((x < y)
⇒ ((f y) < (f x))))
4. a : {x:ℝ| x ∈ I}
5. b : {x:ℝ| x ∈ I}
6. x : ℝ
7. u : ℝ
8. v : ℝ
9. a ≤ u
10. u < v
11. v ≤ b
12. f u ≠ f v
13. f u ≠ x ∨ f v ≠ x
⊢ ∃z:ℝ. ((u ≤ z) ∧ (z ≤ v) ∧ f(z) ≠ x)
Latex:
Latex:
1. I : Interval
2. f : I {}\mrightarrow{}\mBbbR{}
3. (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x < y) {}\mRightarrow{} ((f x) < (f y))))
\mvee{} (\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x < y) {}\mRightarrow{} ((f y) < (f x))))
4. a : \{x:\mBbbR{}| x \mmember{} I\}
5. b : \{x:\mBbbR{}| x \mmember{} I\}
6. x : \mBbbR{}
7. u : \mBbbR{}
8. v : \mBbbR{}
9. a \mleq{} u
10. u < v
11. v \mleq{} b
12. f u \mneq{} f v
\mvdash{} \mexists{}z:\mBbbR{}. ((u \mleq{} z) \mwedge{} (z \mleq{} v) \mwedge{} f(z) \mneq{} x)
By
Latex:
(InstLemma `rneq-cases` [\mkleeneopen{}f u\mkleeneclose{};\mkleeneopen{}f v\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
THENA (Auto
THEN Try ((DSetVars
THEN MemTypeCD
THEN Auto
THEN InstLemma `i-member-between` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
THEN Auto))
)
)
Home
Index