Nuprl Lemma : sup_wf
∀[A:Set(ℝ)]. ∀[b:ℝ].  (sup(A) = b ∈ ℙ)
Proof
Definitions occuring in Statement : 
sup: sup(A) = b
, 
rset: Set(ℝ)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
sup: sup(A) = b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
upper-bound_wf, 
all_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
exists_wf, 
rset-member_wf, 
rsub_wf, 
rset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b:\mBbbR{}].    (sup(A)  =  b  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_10_09
Last ObjectModification:
2015_12_28-AM-01_15_59
Theory : reals
Home
Index