Nuprl Lemma : total-function-limit
∀f:ℝ ⟶ ℝ. ∀y:ℝ. ∀x:ℕ ⟶ ℝ.  ((∀x,y:ℝ.  ((x = y) ⇒ (f[x] = f[y]))) ⇒ lim n→∞.x[n] = y ⇒ lim n→∞.f[x[n]] = f[y])
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y, 
req: x = y, 
real: ℝ, 
nat: ℕ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
rfun: I ⟶ℝ, 
top: Top, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
r-ap: f(x), 
true: True
Lemmas referenced : 
continuous-limit, 
riiint_wf, 
member_riiint_lemma, 
subtype_rel_dep_function, 
real_wf, 
true_wf, 
subtype_rel_self, 
set_wf, 
all_wf, 
req_wf, 
nat_wf, 
function-is-continuous, 
iproper-riiint, 
i-member_wf, 
converges-to_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
hypothesis, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isectElimination, 
lambdaEquality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
independent_functionElimination, 
functionEquality, 
functionExtensionality, 
natural_numberEquality
Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}y:\mBbbR{}.  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  y  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.f[x[n]]  =  f[y])
Date html generated:
2016_10_26-AM-09_52_10
Last ObjectModification:
2016_09_05-AM-08_42_16
Theory : reals
Home
Index