Step
*
1
1
2
2
2
of Lemma
totally-bounded-sup
1. [A] : Set(ℝ)
2. ∀e:ℝ. ((r0 < e)
⇒ (∃n:ℕ+. ∃a:ℕn ⟶ ℝ. ((∀i:ℕn. (a i ∈ A)) ∧ (∀x:ℝ. ((x ∈ A)
⇒ (∃i:ℕn. (|x - a i| < e)))))))
3. x : ℝ
4. y : ℝ
5. x < y
6. e : ℝ
7. r0 < e
8. (x + (r(4) * e)) = y
9. n : ℕ+
10. a : ℕn ⟶ ℝ
11. ∀i:ℕn. (a i ∈ A)
12. ∀x:ℝ. ((x ∈ A)
⇒ (∃i:ℕn. (|x - a i| < e)))
13. x < (x + (r(2) * e))
14. k : ℕn
15. (rmaximum(0;n - 1;i.a i) - e) < (a k)
16. (a k) < (x + (r(2) * e))
⊢ (∃a:ℝ. ((a ∈ A) ∧ (x < a))) ∨ A ≤ y
BY
{ (((OrRight THEN Auto) THEN D 0) THEN Auto) }
1
1. A : Set(ℝ)
2. ∀e:ℝ. ((r0 < e)
⇒ (∃n:ℕ+. ∃a:ℕn ⟶ ℝ. ((∀i:ℕn. (a i ∈ A)) ∧ (∀x:ℝ. ((x ∈ A)
⇒ (∃i:ℕn. (|x - a i| < e)))))))
3. x : ℝ
4. y : ℝ
5. x < y
6. e : ℝ
7. r0 < e
8. (x + (r(4) * e)) = y
9. n : ℕ+
10. a : ℕn ⟶ ℝ
11. ∀i:ℕn. (a i ∈ A)
12. ∀x:ℝ. ((x ∈ A)
⇒ (∃i:ℕn. (|x - a i| < e)))
13. x < (x + (r(2) * e))
14. k : ℕn
15. (rmaximum(0;n - 1;i.a i) - e) < (a k)
16. (a k) < (x + (r(2) * e))
17. x1 : ℝ
18. x1 ∈ A
⊢ x1 ≤ y
Latex:
Latex:
1. [A] : Set(\mBbbR{})
2. \mforall{}e:\mBbbR{}
((r0 < e)
{}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. \mexists{}a:\mBbbN{}n {}\mrightarrow{} \mBbbR{}. ((\mforall{}i:\mBbbN{}n. (a i \mmember{} A)) \mwedge{} (\mforall{}x:\mBbbR{}. ((x \mmember{} A) {}\mRightarrow{} (\mexists{}i:\mBbbN{}n. (|x - a i| < e)))))))
3. x : \mBbbR{}
4. y : \mBbbR{}
5. x < y
6. e : \mBbbR{}
7. r0 < e
8. (x + (r(4) * e)) = y
9. n : \mBbbN{}\msupplus{}
10. a : \mBbbN{}n {}\mrightarrow{} \mBbbR{}
11. \mforall{}i:\mBbbN{}n. (a i \mmember{} A)
12. \mforall{}x:\mBbbR{}. ((x \mmember{} A) {}\mRightarrow{} (\mexists{}i:\mBbbN{}n. (|x - a i| < e)))
13. x < (x + (r(2) * e))
14. k : \mBbbN{}n
15. (rmaximum(0;n - 1;i.a i) - e) < (a k)
16. (a k) < (x + (r(2) * e))
\mvdash{} (\mexists{}a:\mBbbR{}. ((a \mmember{} A) \mwedge{} (x < a))) \mvee{} A \mleq{} y
By
Latex:
(((OrRight THEN Auto) THEN D 0) THEN Auto)
Home
Index