Nuprl Lemma : totally-bounded_wf

[A:Set(ℝ)]. (totally-bounded(A) ∈ ℙ)


Proof




Definitions occuring in Statement :  totally-bounded: totally-bounded(A) rset: Set(ℝ) uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  totally-bounded: totally-bounded(A) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: nat_plus: + and: P ∧ Q so_apply: x[s] all: x:A. B[x] exists: x:A. B[x]
Lemmas referenced :  all_wf real_wf rless_wf int-to-real_wf exists_wf nat_plus_wf int_seg_wf rset-member_wf rabs_wf rsub_wf rset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality natural_numberEquality hypothesisEquality because_Cache setElimination rename productEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Set(\mBbbR{})].  (totally-bounded(A)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_14_44
Last ObjectModification: 2015_12_28-AM-01_17_16

Theory : reals


Home Index