Nuprl Lemma : trivial-homeo-image
∀[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)].  homeo-image(X;Y;dY;h) ≡ Y
Proof
Definitions occuring in Statement : 
homeo-image: homeo-image(A;Y;dY;h), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
metric: metric(X), 
ext-eq: A ≡ B, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
homeo-image: homeo-image(A;Y;dY;h), 
homeomorphic: homeomorphic(X;dX;Y;dY), 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
mfun: FUN(X ⟶ Y), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].
    homeo-image(X;Y;dY;h)  \mequiv{}  Y
Date html generated:
2020_05_20-AM-11_51_30
Last ObjectModification:
2019_11_18-PM-11_22_16
Theory : reals
Home
Index