Nuprl Lemma : trivial-homeo-image

[X,Y:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[h:homeomorphic(X;dX;Y;dY)].  homeo-image(X;Y;dY;h) ≡ Y


Proof




Definitions occuring in Statement :  homeo-image: homeo-image(A;Y;dY;h) homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) ext-eq: A ≡ B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a prop: homeo-image: homeo-image(A;Y;dY;h) homeomorphic: homeomorphic(X;dX;Y;dY) exists: x:A. B[x] sq_exists: x:A [B[x]] pi1: fst(t) all: x:A. B[x] implies:  Q mfun: FUN(X ⟶ Y) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)

Latex:
\mforall{}[X,Y:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[h:homeomorphic(X;dX;Y;dY)].
    homeo-image(X;Y;dY;h)  \mequiv{}  Y



Date html generated: 2020_05_20-AM-11_51_30
Last ObjectModification: 2019_11_18-PM-11_22_16

Theory : reals


Home Index