Step
*
1
1
of Lemma
uniform-partition_wf
1. I : Interval
2. icompact(I)
3. k : ℕ+
4. r0 < r(k)
5. r(k) ≠ r0
6. left-endpoint(I) ≤ right-endpoint(I)
7. left-endpoint(I) ∈ I
8. right-endpoint(I) ∈ I
9. i : ℕk - 1
10. j : ℕk - 1
11. i ≤ j
⊢ (((r(k) - r(i + 1)) * left-endpoint(I)) + (r(i + 1) * right-endpoint(I))/r(k)) ≤ (((r(k) - r(j + 1))
* left-endpoint(I))
+ (r(j + 1) * right-endpoint(I))/r(k))
BY
{ ((Assert (r(k) - r(i + 1)) = ((r(k) - r(j + 1)) + r(j - i)) BY
(RWW "rsub-int radd-int" 0 THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
) }
1
1. I : Interval
2. icompact(I)
3. k : ℕ+
4. r0 < r(k)
5. r(k) ≠ r0
6. left-endpoint(I) ≤ right-endpoint(I)
7. left-endpoint(I) ∈ I
8. right-endpoint(I) ∈ I
9. i : ℕk - 1
10. j : ℕk - 1
11. i ≤ j
12. (r(k) - r(i + 1)) = ((r(k) - r(j + 1)) + r(j - i))
⊢ ((((r(k) - r(j + 1)) + r(j - i)) * left-endpoint(I)) + (r(i + 1) * right-endpoint(I))/r(k)) ≤ (((r(k) - r(j + 1))
* left-endpoint(I))
+ (r(j + 1) * right-endpoint(I))/r(k))
Latex:
Latex:
1. I : Interval
2. icompact(I)
3. k : \mBbbN{}\msupplus{}
4. r0 < r(k)
5. r(k) \mneq{} r0
6. left-endpoint(I) \mleq{} right-endpoint(I)
7. left-endpoint(I) \mmember{} I
8. right-endpoint(I) \mmember{} I
9. i : \mBbbN{}k - 1
10. j : \mBbbN{}k - 1
11. i \mleq{} j
\mvdash{} (((r(k) - r(i + 1)) * left-endpoint(I)) + (r(i + 1) * right-endpoint(I))/r(k)) \mleq{} (((r(k) - r(j
+ 1))
* left-endpoint(I))
+ (r(j + 1) * right-endpoint(I))/r(k))
By
Latex:
((Assert (r(k) - r(i + 1)) = ((r(k) - r(j + 1)) + r(j - i)) BY
(RWW "rsub-int radd-int" 0 THEN Auto))
THEN (RWO "-1" 0 THENA Auto)
)
Home
Index