Nuprl Lemma : unit-prod_wf

[X:Type]. ∀[d:metric(X)].  (I (X;d) ∈ MetricSpace)


Proof




Definitions occuring in Statement :  unit-prod: (X;d) metric-space: MetricSpace metric: metric(X) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unit-prod: (X;d) nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A implies:  Q false: False int_seg: {i..j-} lelt: i ≤ j < k metric-space: MetricSpace
Lemmas referenced :  prod-metric-space_wf istype-void istype-le ifthenelse_wf eq_int_wf metric-space_wf unit-interval-ms_wf metric_wf int_seg_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation lambdaFormation_alt voidElimination hypothesis hypothesisEquality lambdaEquality_alt instantiate setElimination rename productElimination dependent_pairEquality_alt universeIsType axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (I  x  (X;d)  \mmember{}  MetricSpace)



Date html generated: 2019_10_29-AM-11_14_16
Last ObjectModification: 2019_10_02-AM-09_54_29

Theory : reals


Home Index