Nuprl Lemma : upper-bound_functionality

[A:Set(ℝ)]. ∀[b,c:ℝ].  {A ≤ supposing A ≤ b} supposing b ≤ c


Proof




Definitions occuring in Statement :  upper-bound: A ≤ b rset: Set(ℝ) rleq: x ≤ y real: uimplies: supposing a uall: [x:A]. B[x] guard: {T}
Definitions unfolded in proof :  upper-bound: A ≤ b guard: {T} uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b,c:\mBbbR{}].    \{A  \mleq{}  c  supposing  A  \mleq{}  b\}  supposing  b  \mleq{}  c



Date html generated: 2020_05_20-AM-11_27_41
Last ObjectModification: 2020_01_06-PM-00_19_44

Theory : reals


Home Index