Nuprl Lemma : IVTlog_wf
∀a:{a:ℝ| r0 < a} . (IVTlog(a) ∈ {x:ℝ| x = rlog(a)} )
Proof
Definitions occuring in Statement : 
IVTlog: IVTlog(a), 
rlog: rlog(x), 
rless: x < y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
IVTlog: IVTlog(a), 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
pi1: fst(t)
Lemmas referenced : 
log-by-IVT, 
subtype_rel_self, 
real_wf, 
rless_wf, 
int-to-real_wf, 
req_wf, 
rlog_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
setElimination, 
thin, 
rename, 
sqequalRule, 
applyEquality, 
instantiate, 
extract_by_obid, 
hypothesis, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
setEquality, 
natural_numberEquality, 
hypothesisEquality, 
productEquality, 
dependent_set_memberEquality_alt, 
universeIsType, 
inhabitedIsType, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
setIsType
Latex:
\mforall{}a:\{a:\mBbbR{}|  r0  <  a\}  .  (IVTlog(a)  \mmember{}  \{x:\mBbbR{}|  x  =  rlog(a)\}  )
Date html generated:
2019_10_31-AM-06_10_29
Last ObjectModification:
2019_01_28-PM-01_46_43
Theory : reals_2
Home
Index