Nuprl Lemma : rlog_wf
∀[x:{x:ℝ| r0 < x} ]. (rlog(x) ∈ ℝ)
Proof
Definitions occuring in Statement :
rlog: rlog(x)
,
rless: x < y
,
int-to-real: r(n)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
cand: A c∧ B
,
rev_implies: P
⇐ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
sq_stable: SqStable(P)
,
top: Top
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rlog: rlog(x)
,
rfun: I ⟶ℝ
,
ifun: ifun(f;I)
,
real-fun: real-fun(f;a;b)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
rmin_strict_ub,
int-to-real_wf,
rless-int,
sq_stable__rless,
member_rccint_lemma,
rless_transitivity1,
rmin_wf,
rless_wf,
rleq_wf,
rmax_wf,
real_wf,
set_wf,
rdiv_wf,
sq_stable__rleq,
i-member_wf,
rccint_wf,
left_endpoint_rccint_lemma,
right_endpoint_rccint_lemma,
req_functionality,
rdiv_functionality,
req_weakening,
req_wf,
ifun_wf,
rccint-icompact,
rmin-rleq-rmax,
integral_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isectElimination,
natural_numberEquality,
hypothesis,
setElimination,
rename,
because_Cache,
productElimination,
independent_functionElimination,
sqequalRule,
independent_pairFormation,
imageMemberEquality,
hypothesisEquality,
baseClosed,
imageElimination,
isect_memberEquality,
voidElimination,
voidEquality,
lambdaFormation,
inrFormation,
independent_isectElimination,
productEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
lambdaEquality,
dependent_set_memberEquality,
setEquality
Latex:
\mforall{}[x:\{x:\mBbbR{}| r0 < x\} ]. (rlog(x) \mmember{} \mBbbR{})
Date html generated:
2016_10_26-PM-00_27_06
Last ObjectModification:
2016_09_12-PM-05_44_14
Theory : reals_2
Home
Index