Nuprl Lemma : rmin-rleq-rmax

a,b:ℝ.  (rmin(a;b) ≤ rmax(a;b))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rmin: rmin(x;y) rmax: rmax(x;y) real: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q and: P ∧ Q prop:
Lemmas referenced :  rmin_lb rleq-rmax real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination inlFormation productElimination hypothesis

Latex:
\mforall{}a,b:\mBbbR{}.    (rmin(a;b)  \mleq{}  rmax(a;b))



Date html generated: 2016_05_18-AM-07_17_15
Last ObjectModification: 2015_12_28-AM-00_44_22

Theory : reals


Home Index