Nuprl Lemma : rmin-rleq-rmax
∀a,b:ℝ.  (rmin(a;b) ≤ rmax(a;b))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
rmin: rmin(x;y), 
rmax: rmax(x;y), 
real: ℝ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
or: P ∨ Q, 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
rmin_lb, 
rleq-rmax, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
inlFormation, 
productElimination, 
hypothesis
Latex:
\mforall{}a,b:\mBbbR{}.    (rmin(a;b)  \mleq{}  rmax(a;b))
Date html generated:
2016_05_18-AM-07_17_15
Last ObjectModification:
2015_12_28-AM-00_44_22
Theory : reals
Home
Index