Nuprl Lemma : rmin_strict_ub

x,y,z:ℝ.  ((z < x) ∧ (z < y) ⇐⇒ z < rmin(x;y))


Proof




Definitions occuring in Statement :  rless: x < y rmin: rmin(x;y) real: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q exists: x:A. B[x] nat_plus: + guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top rmin: rmin(x;y) squash: T real: int_upper: {i...} le: A ≤ B true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  rless_wf rmin_wf real_wf rless-iff4 imax_nat_plus nat_plus_wf nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf imax_wf less_than_wf squash_wf true_wf less_than_transitivity1 imin_unfold iff_weakening_equal int_upper_wf all_wf int_upper_properties decidable__le intformle_wf int_formula_prop_le_lemma imax_lb le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot le_wf int_upper_subtype_int_upper imax_ub rmin-rleq rless_transitivity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin productEquality cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis dependent_functionElimination independent_functionElimination because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll dependent_set_memberEquality applyEquality imageElimination addEquality imageMemberEquality baseClosed universeEquality equalityElimination promote_hyp instantiate cumulativity inrFormation inlFormation

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((z  <  x)  \mwedge{}  (z  <  y)  \mLeftarrow{}{}\mRightarrow{}  z  <  rmin(x;y))



Date html generated: 2017_10_03-AM-08_30_20
Last ObjectModification: 2017_07_28-AM-07_26_31

Theory : reals


Home Index