Nuprl Lemma : rmin_strict_ub
∀x,y,z:ℝ.  ((z < x) ∧ (z < y) 
⇐⇒ z < rmin(x;y))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
rmin: rmin(x;y)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rmin: rmin(x;y)
, 
squash: ↓T
, 
real: ℝ
, 
int_upper: {i...}
, 
le: A ≤ B
, 
true: True
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
rless_wf, 
rmin_wf, 
real_wf, 
rless-iff4, 
imax_nat_plus, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
imax_wf, 
less_than_wf, 
squash_wf, 
true_wf, 
less_than_transitivity1, 
imin_unfold, 
iff_weakening_equal, 
int_upper_wf, 
all_wf, 
int_upper_properties, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
imax_lb, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
le_wf, 
int_upper_subtype_int_upper, 
imax_ub, 
rmin-rleq, 
rless_transitivity1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
dependent_set_memberEquality, 
applyEquality, 
imageElimination, 
addEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
inrFormation, 
inlFormation
Latex:
\mforall{}x,y,z:\mBbbR{}.    ((z  <  x)  \mwedge{}  (z  <  y)  \mLeftarrow{}{}\mRightarrow{}  z  <  rmin(x;y))
Date html generated:
2017_10_03-AM-08_30_20
Last ObjectModification:
2017_07_28-AM-07_26_31
Theory : reals
Home
Index