Nuprl Lemma : rless-iff4

x,y:ℝ.  (x < ⇐⇒ ∃n:ℕ+. ∀m:{n...}. (x m) 4 < m)


Proof




Definitions occuring in Statement :  rless: x < y real: int_upper: {i...} nat_plus: + less_than: a < b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: uall: [x:A]. B[x] rev_implies:  Q so_lambda: λ2x.t[x] nat_plus: + real: int_upper: {i...} le: A ≤ B guard: {T} uimplies: supposing a so_apply: x[s] less_than: a < b squash: T less_than': less_than'(a;b) true: True exists: x:A. B[x] rless: x < y sq_exists: x:{A| B[x]} sq_stable: SqStable(P) decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top uiff: uiff(P;Q)
Lemmas referenced :  le_wf false_wf int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_add_lemma int_formula_prop_less_lemma itermSubtract_wf itermConstant_wf itermAdd_wf intformless_wf subtract-is-int-iff decidable__lt int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le sq_stable__less_than nat_plus_properties int_upper_properties real_wf less_than_transitivity1 less_than_wf int_upper_wf all_wf nat_plus_wf exists_wf rless_wf rless-iff-large-diff
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_pairFormation independent_functionElimination isectElimination sqequalRule lambdaEquality setElimination rename addEquality applyEquality dependent_set_memberEquality natural_numberEquality independent_isectElimination because_Cache introduction imageMemberEquality baseClosed dependent_pairFormation imageElimination unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion dependent_set_memberFormation

Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\{n...\}.  (x  m)  +  4  <  y  m)



Date html generated: 2016_05_18-AM-07_03_54
Last ObjectModification: 2016_01_17-AM-01_50_05

Theory : reals


Home Index