Nuprl Lemma : rless-iff-large-diff

x,y:ℝ.  (x < ⇐⇒ ∀b:ℕ+. ∃n:ℕ+. ∀m:ℕ+((n ≤ m)  (b ≤ ((y m) m))))


Proof




Definitions occuring in Statement :  rless: x < y real: nat_plus: + le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a subtract: m
Definitions unfolded in proof :  rless: x < y all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q prop: rev_implies:  Q so_lambda: λ2x.t[x] nat_plus: + real: so_apply: x[s] int_upper: {i...} sq_exists: x:{A| B[x]} sq_stable: SqStable(P) squash: T decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B less_than: a < b uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True guard: {T}
Lemmas referenced :  subtract-is-int-iff int_upper_properties less_than_transitivity1 int_upper_wf le-add-cancel add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 decidable__lt false_wf int_term_value_subtract_lemma itermSubtract_wf add-is-int-iff less_than_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le sq_stable__less_than nat_plus_properties real_wf subtract_wf le_wf exists_wf nat_plus_wf all_wf rless_wf regular-less-iff
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation hypothesis isectElimination thin hypothesisEquality independent_pairFormation productElimination independent_functionElimination lambdaEquality functionEquality setElimination rename applyEquality dependent_functionElimination dependent_set_memberEquality addEquality natural_numberEquality introduction imageMemberEquality baseClosed imageElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion minusEquality

Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}b:\mBbbN{}\msupplus{}.  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\mBbbN{}\msupplus{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  (b  \mleq{}  ((y  m)  -  x  m))))



Date html generated: 2016_05_18-AM-07_03_38
Last ObjectModification: 2016_01_17-AM-01_50_09

Theory : reals


Home Index