Nuprl Lemma : rless-iff-large-diff
∀x,y:ℝ.  (x < y ⇐⇒ ∀b:ℕ+. ∃n:ℕ+. ∀m:ℕ+. ((n ≤ m) ⇒ (b ≤ ((y m) - x m))))
Proof
Definitions occuring in Statement : 
rless: x < y, 
real: ℝ, 
nat_plus: ℕ+, 
le: A ≤ B, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
apply: f a, 
subtract: n - m
Definitions unfolded in proof : 
rless: x < y, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
real: ℝ, 
so_apply: x[s], 
int_upper: {i...}, 
sq_exists: ∃x:{A| B[x]}, 
sq_stable: SqStable(P), 
squash: ↓T, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
le: A ≤ B, 
less_than: a < b, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
true: True, 
guard: {T}
Lemmas referenced : 
subtract-is-int-iff, 
int_upper_properties, 
less_than_transitivity1, 
int_upper_wf, 
le-add-cancel, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
decidable__lt, 
false_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
add-is-int-iff, 
less_than_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
sq_stable__less_than, 
nat_plus_properties, 
real_wf, 
subtract_wf, 
le_wf, 
exists_wf, 
nat_plus_wf, 
all_wf, 
rless_wf, 
regular-less-iff
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
lambdaEquality, 
functionEquality, 
setElimination, 
rename, 
applyEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
because_Cache, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
minusEquality
Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  \mforall{}b:\mBbbN{}\msupplus{}.  \mexists{}n:\mBbbN{}\msupplus{}.  \mforall{}m:\mBbbN{}\msupplus{}.  ((n  \mleq{}  m)  {}\mRightarrow{}  (b  \mleq{}  ((y  m)  -  x  m))))
Date html generated:
2016_05_18-AM-07_03_38
Last ObjectModification:
2016_01_17-AM-01_50_09
Theory : reals
Home
Index