Step
*
1
3
1
1
1
of Lemma
arcsine-contraction-Taylor2
1. a : ℝ
2. r(-1) < a
3. a < r1
4. x : ℝ
5. c : ℝ
6. |a| ≤ c
7. rsqrt(r1 - a * a) ≤ c
8. r0 ≤ (r1 - a * a)
9. e : {e:ℝ| r0 < e}
10. (-(π/2), π/2) ⊆ (-∞, ∞)
11. d(rcos(x))/dx = λx.-(rsin(x)) on (-∞, ∞)
12. d(rsin(x))/dx = λx.rcos(x) on (-∞, ∞)
13. d(-(rsin(x)))/dx = λx.-(rcos(x)) on (-∞, ∞)
14. d(-(rcos(x)))/dx = λx.rsin(x) on (-∞, ∞)
15. c1 : ℝ
16. rmin(arcsine(a);x) ≤ c1
17. c1 ≤ rmax(arcsine(a);x)
18. |arcsine-contraction(a;x) - Σ{(if (k =z 0) then arcsine-contraction(a;arcsine(a))
if (k =z 1) then r1 + ((a * -(rsin(arcsine(a)))) - rsqrt(r1 - a * a) * rcos(arcsine(a)))
if (k =z 2) then r0 + ((a * -(rcos(arcsine(a)))) - rsqrt(r1 - a * a) * -(rsin(arcsine(a))))
else r0 + ((a * -(-(rsin(arcsine(a))))) - rsqrt(r1 - a * a) * -(rcos(arcsine(a))))
fi /r((k)!))
* x - arcsine(a)^k | 0≤k≤2} - (x - c1^2 * (r0 + ((a * -(-(rsin(c1)))) - rsqrt(r1 - a * a) * -(rcos(c1)))/r((2)!)))
* (x - arcsine(a))| ≤ e
19. (-(π/2) < arcsine(a)) ∧ (arcsine(a) < π/2)
⊢ (rcos(arcsine(a)) * rcos(arcsine(a))) = (r1 - a * a)
BY
{ (InstLemma `rsin-rcos-pythag` [⌜arcsine(a)⌝]⋅ THENA Auto) }
1
1. a : ℝ
2. r(-1) < a
3. a < r1
4. x : ℝ
5. c : ℝ
6. |a| ≤ c
7. rsqrt(r1 - a * a) ≤ c
8. r0 ≤ (r1 - a * a)
9. e : {e:ℝ| r0 < e}
10. (-(π/2), π/2) ⊆ (-∞, ∞)
11. d(rcos(x))/dx = λx.-(rsin(x)) on (-∞, ∞)
12. d(rsin(x))/dx = λx.rcos(x) on (-∞, ∞)
13. d(-(rsin(x)))/dx = λx.-(rcos(x)) on (-∞, ∞)
14. d(-(rcos(x)))/dx = λx.rsin(x) on (-∞, ∞)
15. c1 : ℝ
16. rmin(arcsine(a);x) ≤ c1
17. c1 ≤ rmax(arcsine(a);x)
18. |arcsine-contraction(a;x) - Σ{(if (k =z 0) then arcsine-contraction(a;arcsine(a))
if (k =z 1) then r1 + ((a * -(rsin(arcsine(a)))) - rsqrt(r1 - a * a) * rcos(arcsine(a)))
if (k =z 2) then r0 + ((a * -(rcos(arcsine(a)))) - rsqrt(r1 - a * a) * -(rsin(arcsine(a))))
else r0 + ((a * -(-(rsin(arcsine(a))))) - rsqrt(r1 - a * a) * -(rcos(arcsine(a))))
fi /r((k)!))
* x - arcsine(a)^k | 0≤k≤2} - (x - c1^2 * (r0 + ((a * -(-(rsin(c1)))) - rsqrt(r1 - a * a) * -(rcos(c1)))/r((2)!)))
* (x - arcsine(a))| ≤ e
19. (-(π/2) < arcsine(a)) ∧ (arcsine(a) < π/2)
20. (rsin(arcsine(a))^2 + rcos(arcsine(a))^2) = r1
⊢ (rcos(arcsine(a)) * rcos(arcsine(a))) = (r1 - a * a)
Latex:
Latex:
1. a : \mBbbR{}
2. r(-1) < a
3. a < r1
4. x : \mBbbR{}
5. c : \mBbbR{}
6. |a| \mleq{} c
7. rsqrt(r1 - a * a) \mleq{} c
8. r0 \mleq{} (r1 - a * a)
9. e : \{e:\mBbbR{}| r0 < e\}
10. (-(\mpi{}/2), \mpi{}/2) \msubseteq{} (-\minfty{}, \minfty{})
11. d(rcos(x))/dx = \mlambda{}x.-(rsin(x)) on (-\minfty{}, \minfty{})
12. d(rsin(x))/dx = \mlambda{}x.rcos(x) on (-\minfty{}, \minfty{})
13. d(-(rsin(x)))/dx = \mlambda{}x.-(rcos(x)) on (-\minfty{}, \minfty{})
14. d(-(rcos(x)))/dx = \mlambda{}x.rsin(x) on (-\minfty{}, \minfty{})
15. c1 : \mBbbR{}
16. rmin(arcsine(a);x) \mleq{} c1
17. c1 \mleq{} rmax(arcsine(a);x)
18. |arcsine-contraction(a;x) - \mSigma{}\{(if (k =\msubz{} 0) then arcsine-contraction(a;arcsine(a))
if (k =\msubz{} 1) then r1 + ((a * -(rsin(arcsine(a)))) - rsqrt(r1 - a * a) * rcos(arcsine(a)))
if (k =\msubz{} 2) then r0 + ((a * -(rcos(arcsine(a)))) - rsqrt(r1 - a * a) * -(rsin(arcsine(a))))
else r0 + ((a * -(-(rsin(arcsine(a))))) - rsqrt(r1 - a * a) * -(rcos(arcsine(a))))
fi /r((k)!))
* x - arcsine(a)\^{}k | 0\mleq{}k\mleq{}2\} - (x - c1\^{}2
* (r0 + ((a * -(-(rsin(c1)))) - rsqrt(r1 - a * a) * -(rcos(c1)))/r((2)!)))
* (x - arcsine(a))| \mleq{} e
19. (-(\mpi{}/2) < arcsine(a)) \mwedge{} (arcsine(a) < \mpi{}/2)
\mvdash{} (rcos(arcsine(a)) * rcos(arcsine(a))) = (r1 - a * a)
By
Latex:
(InstLemma `rsin-rcos-pythag` [\mkleeneopen{}arcsine(a)\mkleeneclose{}]\mcdot{} THENA Auto)
Home
Index