Step
*
1
2
1
1
1
of Lemma
derivative-of-integral
.....wf.....
1. I : Interval
2. a : {a:ℝ| a ∈ I}
3. f : {f:I ⟶ℝ| ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ ((f x) = (f y)))}
4. k : ℕ+
5. n : ℕ+
6. icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))
7. ∀x,y:ℝ. ((x ∈ I)
⇒ (y ∈ I)
⇒ (|a_∫-y f[t] dt - a_∫-x f[t] dt - f[x] * (y - x)| = |x_∫-y f[t] - f[x] dt|))
8. i-approx(I;n) ⊆ I
⊢ λx.f[x] ∈ {f:i-approx(I;n) ⟶ℝ| ifun(f;i-approx(I;n))}
BY
{ (DVar `f' THEN Unfold `so_apply` 0 THEN MemTypeCD THEN Auto) }
1
1. I : Interval
2. a : {a:ℝ| a ∈ I}
3. f : I ⟶ℝ
4. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ ((f x) = (f y)))
5. k : ℕ+
6. n : ℕ+
7. icompact(i-approx(I;n))
8. iproper(i-approx(I;n))
9. ∀x,y:ℝ. ((x ∈ I)
⇒ (y ∈ I)
⇒ (|a_∫-y f[t] dt - a_∫-x f[t] dt - f[x] * (y - x)| = |x_∫-y f[t] - f[x] dt|))
10. i-approx(I;n) ⊆ I
⊢ ifun(λx.(f x);i-approx(I;n))
Latex:
Latex:
.....wf.....
1. I : Interval
2. a : \{a:\mBbbR{}| a \mmember{} I\}
3. f : \{f:I {}\mrightarrow{}\mBbbR{}| \mforall{}x,y:\{a:\mBbbR{}| a \mmember{} I\} . ((x = y) {}\mRightarrow{} ((f x) = (f y)))\}
4. k : \mBbbN{}\msupplus{}
5. n : \mBbbN{}\msupplus{}
6. icompact(i-approx(I;n)) \mwedge{} iproper(i-approx(I;n))
7. \mforall{}x,y:\mBbbR{}.
((x \mmember{} I)
{}\mRightarrow{} (y \mmember{} I)
{}\mRightarrow{} (|a\_\mint{}\msupminus{}y f[t] dt - a\_\mint{}\msupminus{}x f[t] dt - f[x] * (y - x)| = |x\_\mint{}\msupminus{}y f[t] - f[x] dt|))
8. i-approx(I;n) \msubseteq{} I
\mvdash{} \mlambda{}x.f[x] \mmember{} \{f:i-approx(I;n) {}\mrightarrow{}\mBbbR{}| ifun(f;i-approx(I;n))\}
By
Latex:
(DVar `f' THEN Unfold `so\_apply` 0 THEN MemTypeCD THEN Auto)
Home
Index