Step
*
of Lemma
logseq-converges-ext
∀a:{a:ℝ| r0 < a} . ∀b:{b:ℝ| |b - rlog(a)| ≤ (r1/r(10))} .  lim n→∞.logseq(a;b;n) = rlog(a)
BY
{ Extract of Obid: logseq-converges
  normalizes to:
  
  λa,b,k. cubic_converge(10;k)
  
  not unfolding  cubic_converge
  finishing with Auto }
Latex:
Latex:
\mforall{}a:\{a:\mBbbR{}|  r0  <  a\}  .  \mforall{}b:\{b:\mBbbR{}|  |b  -  rlog(a)|  \mleq{}  (r1/r(10))\}  .    lim  n\mrightarrow{}\minfty{}.logseq(a;b;n)  =  rlog(a)
By
Latex:
Extract  of  Obid:  logseq-converges
normalizes  to:
\mlambda{}a,b,k.  cubic\_converge(10;k)
not  unfolding    cubic\_converge
finishing  with  Auto
Home
Index