Step * 2 1 1 1 1 1 of Lemma partition-sum-bound


1. Interval
2. icompact(I)
3. I ⟶ℝ
4. mc f[x] continuous for x ∈ I
5. partition(I)
6. partition-choice(full-partition(I;p))
7. : ℕ||p|| 1 ⟶ {x:ℝx ∈ I} 
8. a ∈ (ℕ||p|| 1 ⟶ {x:ℝx ∈ I} )
9. ||full-partition(I;p)|| (||p|| 2) ∈ ℤ
10. : ℤ
11. 0 ≤ i
12. i ≤ (||full-partition(I;p)|| 2)
⊢ (|f (a i)| |full-partition(I;p)[i 1] full-partition(I;p)[i]|) ≤ (||f[x]||_I
(full-partition(I;p)[i 1] full-partition(I;p)[i]))
BY
Assert ⌜(full-partition(I;p)[i 1] full-partition(I;p)[i]) |full-partition(I;p)[i 1] full-partition(I;p)[i]|⌝
⋅ }

1
.....assertion..... 
1. Interval
2. icompact(I)
3. I ⟶ℝ
4. mc f[x] continuous for x ∈ I
5. partition(I)
6. partition-choice(full-partition(I;p))
7. : ℕ||p|| 1 ⟶ {x:ℝx ∈ I} 
8. a ∈ (ℕ||p|| 1 ⟶ {x:ℝx ∈ I} )
9. ||full-partition(I;p)|| (||p|| 2) ∈ ℤ
10. : ℤ
11. 0 ≤ i
12. i ≤ (||full-partition(I;p)|| 2)
⊢ (full-partition(I;p)[i 1] full-partition(I;p)[i]) |full-partition(I;p)[i 1] full-partition(I;p)[i]|

2
1. Interval
2. icompact(I)
3. I ⟶ℝ
4. mc f[x] continuous for x ∈ I
5. partition(I)
6. partition-choice(full-partition(I;p))
7. : ℕ||p|| 1 ⟶ {x:ℝx ∈ I} 
8. a ∈ (ℕ||p|| 1 ⟶ {x:ℝx ∈ I} )
9. ||full-partition(I;p)|| (||p|| 2) ∈ ℤ
10. : ℤ
11. 0 ≤ i
12. i ≤ (||full-partition(I;p)|| 2)
13. (full-partition(I;p)[i 1] full-partition(I;p)[i]) |full-partition(I;p)[i 1] full-partition(I;p)[i]|
⊢ (|f (a i)| |full-partition(I;p)[i 1] full-partition(I;p)[i]|) ≤ (||f[x]||_I
(full-partition(I;p)[i 1] full-partition(I;p)[i]))


Latex:


Latex:

1.  I  :  Interval
2.  icompact(I)
3.  f  :  I  {}\mrightarrow{}\mBbbR{}
4.  mc  :  f[x]  continuous  for  x  \mmember{}  I
5.  p  :  partition(I)
6.  y  :  partition-choice(full-partition(I;p))
7.  a  :  \mBbbN{}||p||  +  1  {}\mrightarrow{}  \{x:\mBbbR{}|  x  \mmember{}  I\} 
8.  y  =  a
9.  ||full-partition(I;p)||  =  (||p||  +  2)
10.  i  :  \mBbbZ{}
11.  0  \mleq{}  i
12.  i  \mleq{}  (||full-partition(I;p)||  -  2)
\mvdash{}  (|f  (a  i)|  *  |full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]|)  \mleq{}  (||f[x]||\_I
*  (full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]))


By


Latex:
Assert  \mkleeneopen{}(full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i])
                =  |full-partition(I;p)[i  +  1]  -  full-partition(I;p)[i]|\mkleeneclose{}\mcdot{}




Home Index