Nuprl Lemma : rabs-rcos-rleq

x:ℝ(|rcos(x)| ≤ r1)


Proof




Definitions occuring in Statement :  rcos: rcos(x) rleq: x ≤ y rabs: |x| int-to-real: r(n) real: all: x:A. B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real_wf rabs_wf rcos_wf cosine_wf int-to-real_wf rabs-cosine-rleq rleq_functionality rabs_functionality rcos-is-cosine req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality because_Cache dependent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}x:\mBbbR{}.  (|rcos(x)|  \mleq{}  r1)



Date html generated: 2016_10_26-PM-00_15_00
Last ObjectModification: 2016_09_12-PM-05_40_42

Theory : reals_2


Home Index