Nuprl Lemma : req*-equiv
EquivRel(ℝ*;x,y.x = y)
Proof
Definitions occuring in Statement :
req*: x = y
,
real*: ℝ*
,
equiv_rel: EquivRel(T;x,y.E[x; y])
Definitions unfolded in proof :
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ∧ Q
,
refl: Refl(T;x,y.E[x; y])
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
cand: A c∧ B
,
sym: Sym(T;x,y.E[x; y])
,
implies: P
⇒ Q
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
prop: ℙ
,
trans: Trans(T;x,y.E[x; y])
,
uimplies: b supposing a
Lemmas referenced :
real*_wf,
req*_inversion,
req*_wf,
req*_transitivity,
req*_weakening
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
independent_pairFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesisEquality,
independent_functionElimination,
independent_isectElimination
Latex:
EquivRel(\mBbbR{}*;x,y.x = y)
Date html generated:
2018_05_22-PM-03_14_45
Last ObjectModification:
2017_10_06-PM-02_12_25
Theory : reals_2
Home
Index