Nuprl Lemma : yoneda-lemma
∀C:SmallCategory. ff-functor(C;FUN(op-cat(C);TypeCat);yoneda-embedding(C))
Proof
Definitions occuring in Statement : 
yoneda-embedding: yoneda-embedding(C), 
type-cat: TypeCat, 
op-cat: op-cat(C), 
functor-cat: FUN(C1;C2), 
full-faithful-functor: ff-functor(C;D;F), 
small-category: SmallCategory, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
full-faithful-functor: ff-functor(C;D;F), 
biject: Bij(A;B;f), 
and: P ∧ Q, 
inject: Inj(A;B;f), 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
surject: Surj(A;B;f), 
yoneda-embedding: yoneda-embedding(C), 
top: Top, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat-trans: nat-trans(C;D;F;G), 
squash: ↓T, 
uimplies: b supposing a, 
cat-arrow: cat-arrow(C), 
pi1: fst(t), 
pi2: snd(t), 
type-cat: TypeCat, 
functor-ob: ob(F), 
rep-pre-sheaf: rep-pre-sheaf(C;X), 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
exists: ∃x:A. B[x], 
mk-functor: mk-functor, 
functor-cat: FUN(C1;C2), 
functor-arrow: arrow(F), 
compose: f o g
Lemmas referenced : 
equal_wf, 
cat-arrow_wf, 
functor-cat_wf, 
op-cat_wf, 
small-category-subtype, 
type-cat_wf, 
functor-ob_wf, 
yoneda-embedding_wf, 
functor-arrow_wf, 
cat-ob_wf, 
small-category_wf, 
functor_cat_arrow_lemma, 
ob_mk_functor_lemma, 
arrow_mk_functor_lemma, 
subtype_rel-equal, 
cat_ob_op_lemma, 
subtype_rel_self, 
rep-pre-sheaf_wf, 
cat-id_wf, 
ap_mk_nat_trans_lemma, 
squash_wf, 
true_wf, 
cat-comp-ident1, 
iff_weakening_equal, 
functor_cat_ob_lemma, 
cat_arrow_triple_lemma, 
nat-trans-equal, 
op-cat-arrow, 
cat_comp_tuple_lemma, 
cat-comp_wf, 
cat-comp-ident2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionExtensionality, 
independent_isectElimination, 
functionEquality, 
natural_numberEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation
Latex:
\mforall{}C:SmallCategory.  ff-functor(C;FUN(op-cat(C);TypeCat);yoneda-embedding(C))
Date html generated:
2017_10_05-AM-00_47_20
Last ObjectModification:
2017_07_28-AM-09_19_38
Theory : small!categories
Home
Index