Step * 1 1 1 2 1 2 of Lemma sp-lub-is-bottom

.....aux..... 
1. : ℕ
2. EquivRel(ℕ ⟶ ℕ ⟶ 𝔹;f,g.fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);f;g))
3. Base
4. B1 Base
5. B ∈ f,g:ℕ ⟶ ℕ ⟶ 𝔹//fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);f;g)
⊢ istype((B ∈ ℕ ⟶ ℕ ⟶ 𝔹) ∧ (B1 ∈ ℕ ⟶ ℕ ⟶ 𝔹) ∧ fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);B;B1))
BY
}

1
1. : ℕ
2. EquivRel(ℕ ⟶ ℕ ⟶ 𝔹;f,g.fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);f;g))
3. Base
4. B1 Base
5. B ∈ f,g:ℕ ⟶ ℕ ⟶ 𝔹//fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);f;g)
⊢ istype(B ∈ ℕ ⟶ ℕ ⟶ 𝔹)

2
1. : ℕ
2. EquivRel(ℕ ⟶ ℕ ⟶ 𝔹;f,g.fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);f;g))
3. Base
4. B1 Base
5. B ∈ f,g:ℕ ⟶ ℕ ⟶ 𝔹//fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);f;g)
6. B ∈ ℕ ⟶ ℕ ⟶ 𝔹
⊢ istype((B1 ∈ ℕ ⟶ ℕ ⟶ 𝔹) ∧ fun-equiv(ℕ;a,b.↓= ⊥ ∈ (ℕ ⟶ 𝔹⇐⇒ = ⊥ ∈ (ℕ ⟶ 𝔹);B;B1))


Latex:


Latex:
.....aux..... 
1.  n  :  \mBbbN{}
2.  EquivRel(\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{};f,g.fun-equiv(\mBbbN{};a,b.\mdownarrow{}a  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  b  =  \mbot{};f;g))
3.  B  :  Base
4.  B1  :  Base
5.  B  \mmember{}  f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{}//fun-equiv(\mBbbN{};a,b.\mdownarrow{}a  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  b  =  \mbot{};f;g)
\mvdash{}  istype((B  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{})  \mwedge{}  (B1  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbB{})  \mwedge{}  fun-equiv(\mBbbN{};a,b.\mdownarrow{}a  =  \mbot{}  \mLeftarrow{}{}\mRightarrow{}  b  =  \mbot{};B;B1))


By


Latex:
D  0




Home Index