Nuprl Lemma : sp-meet-assoc
∀[x,y,z:Sierpinski].  (x ∧ y ∧ z = x ∧ y ∧ z ∈ Sierpinski)
Proof
Definitions occuring in Statement : 
sp-meet: f ∧ g, 
Sierpinski: Sierpinski, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
cand: A c∧ B, 
rev_implies: P ⇐ Q, 
prop: ℙ
Lemmas referenced : 
Sierpinski-equal2, 
sp-meet_wf, 
sp-meet-is-top, 
equal-wf-T-base, 
Sierpinski_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
addLevel, 
independent_functionElimination, 
levelHypothesis, 
promote_hyp, 
andLevelFunctionality, 
because_Cache, 
productEquality, 
baseClosed, 
sqequalRule, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[x,y,z:Sierpinski].    (x  \mwedge{}  y  \mwedge{}  z  =  x  \mwedge{}  y  \mwedge{}  z)
 Date html generated: 
2019_10_31-AM-06_36_35
 Last ObjectModification: 
2017_07_28-AM-09_12_16
Theory : synthetic!topology
Home
Index