Nuprl Lemma : TC_wf

[Dom:Type]. ∀[F:Dom ⟶ Dom ⟶ ℙ]. ∀[a,b:Dom].  (TC(λx,y.F[x;y])(a,b) ∈ ℙ)


Proof




Definitions occuring in Statement :  TC: TC(λx,y.F[x; y])(a,b) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T TC: TC(λx,y.F[x; y])(a,b) so_apply: x[s1;s2] prop:
Lemmas referenced :  transitive-closure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[Dom:Type].  \mforall{}[F:Dom  {}\mrightarrow{}  Dom  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:Dom].    (TC(\mlambda{}x,y.F[x;y])(a,b)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-09_07_39
Last ObjectModification: 2015_12_28-PM-07_02_59

Theory : first-order!and!ancestral!logic


Home Index