Nuprl Lemma : TC_wf
∀[Dom:Type]. ∀[F:Dom ⟶ Dom ⟶ ℙ]. ∀[a,b:Dom].  (TC(λx,y.F[x;y])(a,b) ∈ ℙ)
Proof
Definitions occuring in Statement : 
TC: TC(λx,y.F[x; y])(a,b)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
TC: TC(λx,y.F[x; y])(a,b)
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
transitive-closure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[Dom:Type].  \mforall{}[F:Dom  {}\mrightarrow{}  Dom  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:Dom].    (TC(\mlambda{}x,y.F[x;y])(a,b)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_16-AM-09_07_39
Last ObjectModification:
2015_12_28-PM-07_02_59
Theory : first-order!and!ancestral!logic
Home
Index