Nuprl Lemma : l_tree_ind_wf

[L,T,A:Type]. ∀[R:A ⟶ l_tree(L;T) ⟶ ℙ]. ∀[v:l_tree(L;T)]. ∀[leaf:val:L ⟶ {x:A| R[x;l_tree_leaf(val)]} ].
[node:val:T
       ⟶ left_subtree:l_tree(L;T)
       ⟶ right_subtree:l_tree(L;T)
       ⟶ {x:A| R[x;left_subtree]} 
       ⟶ {x:A| R[x;right_subtree]} 
       ⟶ {x:A| R[x;l_tree_node(val;left_subtree;right_subtree)]} ].
  (l_tree_ind(v;
              l_tree_leaf(val) leaf[val];
              l_tree_node(val,left_subtree,right_subtree) rec1,rec2.node[val;left_subtree;right_subtree;rec1;rec2]) 
   ∈ {x:A| R[x;v]} )


Proof




Definitions occuring in Statement :  l_tree_ind: l_tree_ind l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree_leaf: l_tree_leaf(val) l_tree: l_tree(L;T) uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4;s5] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_tree_ind: l_tree_ind so_apply: x[s1;s2;s3;s4;s5] so_apply: x[s] so_apply: x[s1;s2] l_tree-definition l_tree-induction uniform-comp-nat-induction l_tree-ext eq_atom: =a y bool_cases_sqequal eqff_to_assert any: any x btrue: tt bfalse: ff it: top: Top all: x:A. B[x] implies:  Q has-value: (a)↓ so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] uimplies: supposing a strict4: strict4(F) and: P ∧ Q prop: guard: {T} or: P ∨ Q squash: T subtype_rel: A ⊆B
Lemmas referenced :  l_tree-definition l_tree-induction uniform-comp-nat-induction l_tree-ext bool_cases_sqequal eqff_to_assert set_wf all_wf l_tree_node_wf l_tree_leaf_wf l_tree_wf base_wf lifting-strict-atom_eq is-exception_wf has-value_wf_base top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule isect_memberEquality voidElimination voidEquality thin lemma_by_obid hypothesis lambdaFormation because_Cache sqequalSqle divergentSqle callbyvalueDecide sqequalHypSubstitution unionEquality unionElimination sqleReflexivity equalityEquality equalityTransitivity equalitySymmetry hypothesisEquality dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion baseClosed isectElimination independent_isectElimination independent_pairFormation inrFormation imageMemberEquality imageElimination inlFormation instantiate extract_by_obid applyEquality lambdaEquality isectEquality universeEquality functionEquality cumulativity setEquality setElimination rename dependent_set_memberEquality axiomEquality

Latex:
\mforall{}[L,T,A:Type].  \mforall{}[R:A  {}\mrightarrow{}  l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:l\_tree(L;T)].
\mforall{}[leaf:val:L  {}\mrightarrow{}  \{x:A|  R[x;l\_tree\_leaf(val)]\}  ].
\mforall{}[node:val:T
              {}\mrightarrow{}  left$_{subtree}$:l\_tree(L;T)
              {}\mrightarrow{}  right$_{subtree}$:l\_tree(L;T)
              {}\mrightarrow{}  \{x:A|  R[x;left$_{subtree}$]\} 
              {}\mrightarrow{}  \{x:A|  R[x;right$_{subtree}$]\} 
              {}\mrightarrow{}  \{x:A|  R[x;l\_tree\_node(val;left$_{subtree}$;right$_{subtree\000C}$)]\}  ].
    (l\_tree\_ind(v;
                            l\_tree\_leaf(val){}\mRightarrow{}  leaf[val];
                            l\_tree\_node(val,left$_{subtree}$,right$_{subtree}\mbackslash{}\000Cff24){}\mRightarrow{}  rec1,rec2.node[val;...;...;rec1;rec2]) 
      \mmember{}  \{x:A|  R[x;v]\}  )



Date html generated: 2016_05_16-AM-08_43_41
Last ObjectModification: 2016_01_17-AM-00_05_34

Theory : labeled!trees


Home Index