Nuprl Lemma : cbv-sqequal0
∀[a:Base]. eval x = a in 0 ~ 0 supposing (a)↓
Proof
Definitions occuring in Statement : 
has-value: (a)↓, 
callbyvalue: callbyvalue, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
base: Base, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
has-value: (a)↓, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ
Lemmas referenced : 
base_wf, 
exception-not-value, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
divergentSqle, 
callbyvalueCallbyvalue, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
callbyvalueReduce, 
sqleReflexivity, 
lemma_by_obid, 
isectElimination, 
thin, 
baseClosed, 
callbyvalueExceptionCases, 
axiomSqleEquality, 
hypothesisEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
baseApply, 
closedConclusion, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[a:Base].  eval  x  =  a  in  0  \msim{}  0  supposing  (a)\mdownarrow{}
Date html generated:
2016_05_13-PM-03_28_41
Last ObjectModification:
2016_01_14-PM-06_41_58
Theory : arithmetic
Home
Index