Step
*
1
1
of Lemma
div_bounds_1
1. a : ℤ
2. a ≥ 0
3. n : ℤ
4. 0 < n
5. a = (((a ÷ n) * n) + (a rem n)) ∈ ℤ
6. (0 ≤ (a rem n)) ∧ a rem n < n
7. ¬(0 ≤ (a ÷ n))
8. (n * (a ÷ n)) ≤ (n * (-1))
⊢ 0 ≤ (a ÷ n)
BY
{ (((RW IntNormC 5 THENM RW IntNormC (-1)) THENA Auto) THEN SplitAndHyps) }
1
1. a : ℤ
2. a ≥ 0
3. n : ℤ
4. 0 < n
5. a = ((n * (a ÷ n)) + (a rem n)) ∈ ℤ
6. 0 ≤ (a rem n)
7. a rem n < n
8. ¬(0 ≤ (a ÷ n))
9. (n * (a ÷ n)) ≤ ((-1) * n)
⊢ 0 ≤ (a ÷ n)
Latex:
Latex:
1. a : \mBbbZ{}
2. a \mgeq{} 0
3. n : \mBbbZ{}
4. 0 < n
5. a = (((a \mdiv{} n) * n) + (a rem n))
6. (0 \mleq{} (a rem n)) \mwedge{} a rem n < n
7. \mneg{}(0 \mleq{} (a \mdiv{} n))
8. (n * (a \mdiv{} n)) \mleq{} (n * (-1))
\mvdash{} 0 \mleq{} (a \mdiv{} n)
By
Latex:
(((RW IntNormC 5 THENM RW IntNormC (-1)) THENA Auto) THEN SplitAndHyps)
Home
Index