Step
*
1
1
of Lemma
div_reduce_inequality
1. a : ℤ
2. n : ℕ+
3. x : ℤ
⊢ uiff(0 ≤ (a + (n * x));0 ≤ ((a ÷↓ n) + x))
BY
{ TACTIC:((InstLemma `div_floor_bounds` [⌜a⌝;⌜n⌝]⋅ THENM (D -1 THEN Thin (-1) THEN (D -1 THENA Auto) THEN D -1))
THENA Auto
) }
1
1. a : ℤ
2. n : ℕ+
3. x : ℤ
4. ((a ÷↓ n) * n) ≤ a
5. a < ((a ÷↓ n) + 1) * n
⊢ uiff(0 ≤ (a + (n * x));0 ≤ ((a ÷↓ n) + x))
Latex:
Latex:
1. a : \mBbbZ{}
2. n : \mBbbN{}\msupplus{}
3. x : \mBbbZ{}
\mvdash{} uiff(0 \mleq{} (a + (n * x));0 \mleq{} ((a \mdiv{}\mdownarrow{} n) + x))
By
Latex:
TACTIC:((InstLemma `div\_floor\_bounds` [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{}
THENM (D -1 THEN Thin (-1) THEN (D -1 THENA Auto) THEN D -1)
)
THENA Auto
)
Home
Index