Step
*
4
1
of Lemma
divide-le
1. a : ℕ+
2. b : ℤ
3. ¬0 < b rem a
4. x : ℤ
5. (b ÷ a) ≤ x
6. (a * (b ÷ a)) ≤ (a * x)
7. b = (((b ÷ a) * a) + (b rem a)) ∈ ℤ
⊢ b ≤ (a * x)
BY
{ Assert ⌜(b rem a) ≤ a⌝⋅ }
1
.....assertion.....
1. a : ℕ+
2. b : ℤ
3. ¬0 < b rem a
4. x : ℤ
5. (b ÷ a) ≤ x
6. (a * (b ÷ a)) ≤ (a * x)
7. b = (((b ÷ a) * a) + (b rem a)) ∈ ℤ
⊢ (b rem a) ≤ a
2
1. a : ℕ+
2. b : ℤ
3. ¬0 < b rem a
4. x : ℤ
5. (b ÷ a) ≤ x
6. (a * (b ÷ a)) ≤ (a * x)
7. b = (((b ÷ a) * a) + (b rem a)) ∈ ℤ
8. (b rem a) ≤ a
⊢ b ≤ (a * x)
Latex:
Latex:
1. a : \mBbbN{}\msupplus{}
2. b : \mBbbZ{}
3. \mneg{}0 < b rem a
4. x : \mBbbZ{}
5. (b \mdiv{} a) \mleq{} x
6. (a * (b \mdiv{} a)) \mleq{} (a * x)
7. b = (((b \mdiv{} a) * a) + (b rem a))
\mvdash{} b \mleq{} (a * x)
By
Latex:
Assert \mkleeneopen{}(b rem a) \mleq{} a\mkleeneclose{}\mcdot{}
Home
Index