Nuprl Lemma : int_seg_cases
∀[m,n:ℤ]. ∀[x:{m..n-}].  x ∈ {m + 1..n-} supposing ¬(x = m ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
add: n + m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uiff: uiff(P;Q), 
subtype_rel: A ⊆r B, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
subtract: n - m
Lemmas referenced : 
decidable__le, 
false_wf, 
not-le-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-associates, 
add-commutes, 
le-add-cancel, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
zero-add, 
le-add-cancel2, 
and_wf, 
le_wf, 
less_than_wf, 
not_wf, 
equal_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
addEquality, 
natural_numberEquality, 
unionElimination, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[m,n:\mBbbZ{}].  \mforall{}[x:\{m..n\msupminus{}\}].    x  \mmember{}  \{m  +  1..n\msupminus{}\}  supposing  \mneg{}(x  =  m)
Date html generated:
2016_05_13-PM-03_32_53
Last ObjectModification:
2015_12_26-AM-09_45_27
Theory : arithmetic
Home
Index