Nuprl Lemma : minus-is-int-iff

[a:Base]. uiff(-a ∈ ℤ;a ∈ ℤ)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] member: t ∈ T minus: -n int: base: Base
Definitions unfolded in proof :  prop: uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  equal-wf-base base_wf
Rules used in proof :  isect_memberEquality independent_pairEquality productElimination because_Cache hypothesisEquality baseClosed closedConclusion baseApply intEquality thin isectElimination lemma_by_obid equalitySymmetry hypothesis equalityTransitivity axiomEquality sqequalHypSubstitution sqequalRule independent_pairFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution callbyvalueMinus callbyvalueInt minusEquality

Latex:
\mforall{}[a:Base].  uiff(-a  \mmember{}  \mBbbZ{};a  \mmember{}  \mBbbZ{})



Date html generated: 2019_06_20-AM-11_21_57
Last ObjectModification: 2018_10_15-PM-09_50_22

Theory : arithmetic


Home Index