Nuprl Lemma : not-equal-implies-less

[T:Type]. ∀x,y:T.  ((¬(x y ∈ T))  (x < y ∨ y < x)) supposing T ⊆r ℤ


Proof




Definitions occuring in Statement :  less_than: a < b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q not: ¬A sq_type: SQType(T) guard: {T} false: False prop: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  subtype_base_sq int_subtype_base equal_wf not_wf subtype_rel_wf decidable__lt less_than_wf false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel or_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule axiomEquality hypothesis thin rename lambdaFormation sqequalHypSubstitution independent_functionElimination instantiate extract_by_obid isectElimination cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry hypothesisEquality voidElimination applyEquality because_Cache universeEquality unionElimination inlFormation independent_pairFormation productElimination inrFormation addEquality natural_numberEquality lambdaEquality isect_memberEquality voidEquality addLevel orFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}x,y:T.    ((\mneg{}(x  =  y))  {}\mRightarrow{}  (x  <  y  \mvee{}  y  <  x))  supposing  T  \msubseteq{}r  \mBbbZ{}



Date html generated: 2017_04_14-AM-07_16_36
Last ObjectModification: 2017_02_27-PM-02_51_34

Theory : arithmetic


Home Index