Nuprl Lemma : rem_bounds_absval_le
∀b:ℤ-o. ∀a:ℤ.  (|a rem b| ≤ |b|)
Proof
Definitions occuring in Statement : 
absval: |i|, 
int_nzero: ℤ-o, 
le: A ≤ B, 
all: ∀x:A. B[x], 
remainder: n rem m, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a
Lemmas referenced : 
rem_bounds_absval, 
le_weakening2, 
absval_wf, 
equal_wf, 
nat_wf, 
int_nzero_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
remainderEquality, 
setElimination, 
rename, 
independent_functionElimination, 
voidElimination, 
intEquality, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination
Latex:
\mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}a:\mBbbZ{}.    (|a  rem  b|  \mleq{}  |b|)
Date html generated:
2016_05_13-PM-03_34_59
Last ObjectModification:
2015_12_26-AM-09_43_21
Theory : arithmetic
Home
Index