Nuprl Lemma : rem_bounds_absval_le

b:ℤ-o. ∀a:ℤ.  (|a rem b| ≤ |b|)


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o le: A ≤ B all: x:A. B[x] remainder: rem m int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T guard: {T} uall: [x:A]. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B nat: uimplies: supposing a
Lemmas referenced :  rem_bounds_absval le_weakening2 absval_wf equal_wf nat_wf int_nzero_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination remainderEquality setElimination rename independent_functionElimination voidElimination intEquality natural_numberEquality applyEquality because_Cache sqequalRule lambdaEquality independent_isectElimination

Latex:
\mforall{}b:\mBbbZ{}\msupminus{}\msupzero{}.  \mforall{}a:\mBbbZ{}.    (|a  rem  b|  \mleq{}  |b|)



Date html generated: 2016_05_13-PM-03_34_59
Last ObjectModification: 2015_12_26-AM-09_43_21

Theory : arithmetic


Home Index