Nuprl Lemma : seq-add-len

[T:Type]. ∀[s:sequence(T)]. ∀[x:Top].  (||seq-add(s;x)|| ||s|| 1)


Proof




Definitions occuring in Statement :  seq-add: seq-add(s;x) seq-len: ||s|| sequence: sequence(T) uall: [x:A]. B[x] top: Top add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  pi1: fst(t) seq-add: seq-add(s;x) seq-len: ||s|| sequence: sequence(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  sequence_wf top_wf
Rules used in proof :  universeEquality hypothesisEquality isectElimination hypothesis extract_by_obid cut sqequalAxiom sqequalRule thin productElimination sqequalHypSubstitution introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[x:Top].    (||seq-add(s;x)||  \msim{}  ||s||  +  1)



Date html generated: 2018_07_25-PM-01_29_44
Last ObjectModification: 2018_06_19-AM-10_15_07

Theory : arithmetic


Home Index