Nuprl Lemma : seq-cons-item

[T:Type]. ∀[a:Top]. ∀[s:sequence(T)]. ∀[i:Top].  (seq-cons(a;s)[i] if (i =z 0) then else s[i 1] fi )


Proof




Definitions occuring in Statement :  seq-cons: seq-cons(a;s) seq-item: s[i] sequence: sequence(T) ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top subtract: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sequence: sequence(T) seq-item: s[i] seq-cons: seq-cons(a;s) pi2: snd(t)
Lemmas referenced :  top_wf sequence_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesis sqequalAxiom extract_by_obid isect_memberEquality isectElimination hypothesisEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a:Top].  \mforall{}[s:sequence(T)].  \mforall{}[i:Top].
    (seq-cons(a;s)[i]  \msim{}  if  (i  =\msubz{}  0)  then  a  else  s[i  -  1]  fi  )



Date html generated: 2018_07_25-PM-01_29_01
Last ObjectModification: 2018_06_12-PM-10_29_47

Theory : arithmetic


Home Index