Nuprl Lemma : seq-tl-item
∀[T:Type]. ∀[s:sequence(T)]. ∀[i:Top].  (seq-tl(s)[i] ~ s[i + 1])
Proof
Definitions occuring in Statement : 
seq-tl: seq-tl(s)
, 
seq-item: s[i]
, 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
pi2: snd(t)
, 
seq-tl: seq-tl(s)
, 
seq-item: s[i]
, 
sequence: sequence(T)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
sequence_wf, 
top_wf
Rules used in proof : 
universeEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalAxiom, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[i:Top].    (seq-tl(s)[i]  \msim{}  s[i  +  1])
Date html generated:
2018_07_25-PM-01_29_18
Last ObjectModification:
2018_06_17-PM-10_13_27
Theory : arithmetic
Home
Index