Nuprl Lemma : seq-tl-item

[T:Type]. ∀[s:sequence(T)]. ∀[i:Top].  (seq-tl(s)[i] s[i 1])


Proof




Definitions occuring in Statement :  seq-tl: seq-tl(s) seq-item: s[i] sequence: sequence(T) uall: [x:A]. B[x] top: Top add: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  pi2: snd(t) seq-tl: seq-tl(s) seq-item: s[i] sequence: sequence(T) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  sequence_wf top_wf
Rules used in proof :  universeEquality hypothesisEquality isectElimination extract_by_obid hypothesis sqequalRule thin productElimination sqequalHypSubstitution sqequalAxiom cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[i:Top].    (seq-tl(s)[i]  \msim{}  s[i  +  1])



Date html generated: 2018_07_25-PM-01_29_18
Last ObjectModification: 2018_06_17-PM-10_13_27

Theory : arithmetic


Home Index