Nuprl Lemma : seq-truncate-item

[T:Type]. ∀[s:sequence(T)]. ∀[n,i:Top].  (seq-truncate(s;n)[i] s[i])


Proof




Definitions occuring in Statement :  seq-truncate: seq-truncate(s;n) seq-item: s[i] sequence: sequence(T) uall: [x:A]. B[x] top: Top universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sequence: sequence(T) seq-item: s[i] seq-truncate: seq-truncate(s;n) pi2: snd(t)
Lemmas referenced :  top_wf sequence_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction sqequalHypSubstitution productElimination thin sqequalRule sqequalAxiom because_Cache cut extract_by_obid hypothesis isectElimination hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[n,i:Top].    (seq-truncate(s;n)[i]  \msim{}  s[i])



Date html generated: 2018_07_25-PM-01_28_40
Last ObjectModification: 2018_06_11-PM-11_34_18

Theory : arithmetic


Home Index