Nuprl Lemma : seq-truncate-item
∀[T:Type]. ∀[s:sequence(T)]. ∀[n,i:Top].  (seq-truncate(s;n)[i] ~ s[i])
Proof
Definitions occuring in Statement : 
seq-truncate: seq-truncate(s;n)
, 
seq-item: s[i]
, 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sequence: sequence(T)
, 
seq-item: s[i]
, 
seq-truncate: seq-truncate(s;n)
, 
pi2: snd(t)
Lemmas referenced : 
top_wf, 
sequence_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
sqequalAxiom, 
because_Cache, 
cut, 
extract_by_obid, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].  \mforall{}[n,i:Top].    (seq-truncate(s;n)[i]  \msim{}  s[i])
Date html generated:
2018_07_25-PM-01_28_40
Last ObjectModification:
2018_06_11-PM-11_34_18
Theory : arithmetic
Home
Index