Nuprl Lemma : zero-add-sqle
∀[x:Top]. (0 + x ≤ x)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
add: n + m
, 
natural_number: $n
, 
sqle: s ≤ t
Definitions unfolded in proof : 
false: False
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
has-value: (a)↓
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
is-exception_wf, 
has-value_wf_base, 
zero-add, 
exception-not-value, 
value-type-has-value, 
int-value-type, 
top_wf
Rules used in proof : 
voidElimination, 
independent_functionElimination, 
natural_numberEquality, 
intEquality, 
independent_isectElimination, 
isectElimination, 
lemma_by_obid, 
sqleReflexivity, 
exceptionSqequal, 
axiomSqleEquality, 
addExceptionCases, 
productElimination, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
sqequalRule, 
baseClosed, 
hypothesis, 
sqequalHypSubstitution, 
callbyvalueAdd, 
divergentSqle, 
thin, 
sqleRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalitySymmetry, 
equalityTransitivity, 
extract_by_obid
Latex:
\mforall{}[x:Top].  (0  +  x  \mleq{}  x)
Date html generated:
2018_05_21-PM-00_01_43
Last ObjectModification:
2017_11_21-AM-11_24_20
Theory : arithmetic
Home
Index