Nuprl Lemma : zero-add-sqle

[x:Top]. (0 x ≤ x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] top: Top add: m natural_number: $n sqle: s ≤ t
Definitions unfolded in proof :  false: False implies:  Q uimplies: supposing a and: P ∧ Q has-value: (a)↓ member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  is-exception_wf has-value_wf_base zero-add exception-not-value value-type-has-value int-value-type top_wf
Rules used in proof :  voidElimination independent_functionElimination natural_numberEquality intEquality independent_isectElimination isectElimination lemma_by_obid sqleReflexivity exceptionSqequal axiomSqleEquality addExceptionCases productElimination hypothesisEquality closedConclusion baseApply sqequalRule baseClosed hypothesis sqequalHypSubstitution callbyvalueAdd divergentSqle thin sqleRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution equalitySymmetry equalityTransitivity extract_by_obid

Latex:
\mforall{}[x:Top].  (0  +  x  \mleq{}  x)



Date html generated: 2018_05_21-PM-00_01_43
Last ObjectModification: 2017_11_21-AM-11_24_20

Theory : arithmetic


Home Index