Nuprl Lemma : zero_ann_b
∀[a,b:ℤ].  (¬(a = 0 ∈ ℤ)) ∧ (¬(b = 0 ∈ ℤ)) supposing ¬((a * b) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
top: Top
Lemmas referenced : 
equal-wf-base, 
int_subtype_base, 
not_wf, 
zero-mul, 
mul-commutes
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_functionElimination, 
thin, 
voidElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
intEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
baseClosed, 
because_Cache, 
baseApply, 
closedConclusion, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
voidEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].    (\mneg{}(a  =  0))  \mwedge{}  (\mneg{}(b  =  0))  supposing  \mneg{}((a  *  b)  =  0)
Date html generated:
2016_10_21-AM-09_37_25
Last ObjectModification:
2016_07_12-AM-05_00_44
Theory : arithmetic
Home
Index