Nuprl Lemma : zero_ann_b

[a,b:ℤ].  (a 0 ∈ ℤ)) ∧ (b 0 ∈ ℤ)) supposing ¬((a b) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q false: False uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B prop: uimplies: supposing a and: P ∧ Q top: Top
Lemmas referenced :  equal-wf-base int_subtype_base not_wf zero-mul mul-commutes
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_functionElimination thin voidElimination cut introduction extract_by_obid isectElimination intEquality hypothesisEquality applyEquality hypothesis sqequalRule baseClosed because_Cache baseApply closedConclusion isect_memberFormation independent_pairFormation lambdaFormation productElimination independent_pairEquality lambdaEquality dependent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality hyp_replacement Error :applyLambdaEquality,  voidEquality

Latex:
\mforall{}[a,b:\mBbbZ{}].    (\mneg{}(a  =  0))  \mwedge{}  (\mneg{}(b  =  0))  supposing  \mneg{}((a  *  b)  =  0)



Date html generated: 2016_10_21-AM-09_37_25
Last ObjectModification: 2016_07_12-AM-05_00_44

Theory : arithmetic


Home Index