Nuprl Lemma : eq_atom1_self
∀[x:Atom1]. (x =a1 x ~ tt)
Proof
Definitions occuring in Statement : 
eq_atom: eq_atom$n(x;y)
, 
atom: Atom$n
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
eq_atom_wf1, 
assert_of_eq_atom1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
productElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
atomnEquality
Latex:
\mforall{}[x:Atom1].  (x  =a1  x  \msim{}  tt)
Date html generated:
2016_05_13-PM-03_21_15
Last ObjectModification:
2015_12_26-AM-09_12_02
Theory : atom_1
Home
Index