Nuprl Lemma : free-from-atom-atom

[a,b:Atom1].  uiff(b#a:Atom1;¬(a b ∈ Atom1))


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B
Lemmas referenced :  equal-wf-base atom1_subtype_base free-from-atom_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation thin hypothesis sqequalHypSubstitution independent_functionElimination voidElimination extract_by_obid isectElimination atomnEquality hypothesisEquality applyEquality sqequalRule lambdaEquality dependent_functionElimination because_Cache freeFromAtomBase freeFromAtomAxiom productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry hyp_replacement Error :applyLambdaEquality,  freeFromAtomAbsurdity

Latex:
\mforall{}[a,b:Atom1].    uiff(b\#a:Atom1;\mneg{}(a  =  b))



Date html generated: 2016_10_21-AM-09_36_08
Last ObjectModification: 2016_07_12-AM-05_00_09

Theory : atom_1


Home Index