Nuprl Lemma : strictly-increasing-seq_wf

[n:ℕ]. ∀[s:ℕn ⟶ ℤ].  (strictly-increasing-seq(n;s) ∈ ℙ)


Proof




Definitions occuring in Statement :  strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strictly-increasing-seq: strictly-increasing-seq(n;s) nat: so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B guard: {T} uimplies: supposing a all: x:A. B[x] prop: so_apply: x[s]
Lemmas referenced :  all_wf int_seg_wf less_than_wf less_than_transitivity2 le_weakening2 and_wf le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality because_Cache applyEquality dependent_set_memberEquality productElimination independent_pairFormation independent_isectElimination dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality intEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (strictly-increasing-seq(n;s)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_48_29
Last ObjectModification: 2015_12_26-AM-10_18_16

Theory : bar-induction


Home Index