Nuprl Lemma : strictly-increasing-seq_wf
∀[n:ℕ]. ∀[s:ℕn ⟶ ℤ].  (strictly-increasing-seq(n;s) ∈ ℙ)
Proof
Definitions occuring in Statement : 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
int_seg_wf, 
less_than_wf, 
less_than_transitivity2, 
le_weakening2, 
and_wf, 
le_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
because_Cache, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
intEquality, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].    (strictly-increasing-seq(n;s)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_48_29
Last ObjectModification:
2015_12_26-AM-10_18_16
Theory : bar-induction
Home
Index