Nuprl Lemma : b2i_bounds
∀[b:𝔹]. ((0 ≤ b2i(b)) ∧ (b2i(b) ≤ 1))
Proof
Definitions occuring in Statement : 
b2i: b2i(b), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
and: P ∧ Q, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
b2i: b2i(b), 
ifthenelse: if b then t else f fi , 
cand: A c∧ B, 
less_than': less_than'(a;b), 
bfalse: ff
Lemmas referenced : 
less_than'_wf, 
b2i_wf, 
bool_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
lambdaFormation, 
because_Cache
Latex:
\mforall{}[b:\mBbbB{}].  ((0  \mleq{}  b2i(b))  \mwedge{}  (b2i(b)  \mleq{}  1))
Date html generated:
2016_05_13-PM-03_55_59
Last ObjectModification:
2015_12_26-AM-10_52_51
Theory : bool_1
Home
Index