Nuprl Lemma : bnot_of_le_int

[i,j:ℤ].  ¬bi ≤j <i


Proof




Definitions occuring in Statement :  le_int: i ≤j bnot: ¬bb lt_int: i <j bool: 𝔹 uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T le_int: i ≤j
Lemmas referenced :  bnot_bnot_elim lt_int_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :inhabitedIsType,  hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality intEquality Error :universeIsType,  lemma_by_obid

Latex:
\mforall{}[i,j:\mBbbZ{}].    \mneg{}\msubb{}i  \mleq{}z  j  =  j  <z  i



Date html generated: 2019_06_20-AM-11_31_07
Last ObjectModification: 2018_09_26-AM-11_14_54

Theory : bool_1


Home Index