Nuprl Lemma : bor-btrue
∀[b:𝔹]. (b ∨btt ~ tt)
Proof
Definitions occuring in Statement : 
bor: p ∨bq, 
btrue: tt, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
sq_type: SQType(T), 
all: ∀x:A. B[x]
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
bor_tt_simp, 
btrue_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[b:\mBbbB{}].  (b  \mvee{}\msubb{}tt  \msim{}  tt)
Date html generated:
2017_04_14-AM-07_30_38
Last ObjectModification:
2017_02_27-PM-02_59_17
Theory : bool_1
Home
Index