Nuprl Lemma : all-value-type
∀[A:Type]. ∀[a:A]. ∀[B:A ⟶ Type].  value-type(∀a:A. B[a]) supposing value-type(B[a])
Proof
Definitions occuring in Statement : 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
value-type: value-type(T)
, 
has-value: (a)↓
Lemmas referenced : 
function-value-type, 
value-type_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
Error :inhabitedIsType, 
independent_isectElimination, 
Error :dependent_pairFormation_alt, 
hypothesis, 
Error :universeIsType, 
imageMemberEquality, 
baseClosed, 
Error :isect_memberEquality_alt, 
axiomSqleEquality, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[a:A].  \mforall{}[B:A  {}\mrightarrow{}  Type].    value-type(\mforall{}a:A.  B[a])  supposing  value-type(B[a])
Date html generated:
2019_06_20-AM-11_21_30
Last ObjectModification:
2019_01_28-PM-03_33_44
Theory : call!by!value_1
Home
Index