Nuprl Lemma : equal-valueall-type

[T:Type]. ∀[x,y:T].  valueall-type(x y ∈ T)


Proof




Definitions occuring in Statement :  valueall-type: valueall-type(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T valueall-type: valueall-type(T) uimplies: supposing a sq_stable: SqStable(P) implies:  Q all: x:A. B[x] has-value: (a)↓ prop: squash: T
Lemmas referenced :  sq_stable__has-value evalall-axiom has-value_wf_base is-exception_wf equal_wf equal-wf-base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality hypothesis independent_functionElimination equalityTransitivity equalitySymmetry because_Cache lambdaFormation equalityElimination divergentSqle sqleReflexivity dependent_functionElimination imageMemberEquality imageElimination cumulativity isect_memberEquality axiomSqleEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    valueall-type(x  =  y)



Date html generated: 2017_04_14-AM-07_15_29
Last ObjectModification: 2017_02_27-PM-02_50_50

Theory : call!by!value_1


Home Index