Nuprl Lemma : ispair-implies-sq
∀[t:Base]. t ~ <fst(t), snd(t)> supposing ispair(t) ~ tt
Proof
Definitions occuring in Statement : 
bfalse: ff, 
btrue: tt, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
ispair: if z is a pair then a otherwise b, 
pair: <a, b>, 
base: Base, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
has-value: (a)↓, 
btrue: tt
Lemmas referenced : 
base_wf, 
assert_of_tt, 
ispair-implies, 
is-exception_wf, 
has-value_wf_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
divergentSqle, 
sqleReflexivity, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
hypothesisEquality, 
independent_isectElimination, 
callbyvalueIspair, 
sqequalAxiom, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[t:Base].  t  \msim{}  <fst(t),  snd(t)>  supposing  ispair(t)  \msim{}  tt
 Date html generated: 
2016_05_13-PM-03_27_28
 Last ObjectModification: 
2016_01_14-PM-06_43_29
Theory : call!by!value_1
Home
Index