Nuprl Lemma : strict4-divide

strict4(λx,y,z,w. (x ÷ y))


Proof




Definitions occuring in Statement :  strict4: strict4(F) lambda: λx.A[x] divide: n ÷ m
Definitions unfolded in proof :  strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a prop: divide: n ÷ m or: P ∨ Q squash: T
Lemmas referenced :  value-type-has-value int-value-type has-value_wf_base istype-base is-exception_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation Error :lambdaFormation_alt,  sqequalRule cut callbyvalueDivide sqequalHypSubstitution hypothesis baseApply closedConclusion baseClosed hypothesisEquality productElimination thin introduction extract_by_obid isectElimination intEquality independent_isectElimination equalityTransitivity equalitySymmetry Error :universeIsType,  divideExceptionCases exceptionSqequal Error :inrFormation_alt,  imageMemberEquality imageElimination Error :inlFormation_alt

Latex:
strict4(\mlambda{}x,y,z,w.  (x  \mdiv{}  y))



Date html generated: 2019_06_20-AM-11_21_43
Last ObjectModification: 2019_04_02-AM-10_34_31

Theory : call!by!value_1


Home Index