Nuprl Lemma : strict4-divide
strict4(λx,y,z,w. (x ÷ y))
Proof
Definitions occuring in Statement : 
strict4: strict4(F)
, 
lambda: λx.A[x]
, 
divide: n ÷ m
Definitions unfolded in proof : 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
divide: n ÷ m
, 
or: P ∨ Q
, 
squash: ↓T
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
has-value_wf_base, 
istype-base, 
is-exception_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
sqequalRule, 
cut, 
callbyvalueDivide, 
sqequalHypSubstitution, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
divideExceptionCases, 
exceptionSqequal, 
Error :inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
Error :inlFormation_alt
Latex:
strict4(\mlambda{}x,y,z,w.  (x  \mdiv{}  y))
Date html generated:
2019_06_20-AM-11_21_43
Last ObjectModification:
2019_04_02-AM-10_34_31
Theory : call!by!value_1
Home
Index